

Common Module **Applied Informatics** Module Description

| Countries | Institutions                                | Common Module                                    | ECTS |
|-----------|---------------------------------------------|--------------------------------------------------|------|
| Romania   | Military Technical Academy "Ferdinand I"    | Applied Informatics<br>European Common Technical | 3.0  |
| Poland    | Military University of Technology           | Semester for Defence and Security                |      |
| Greece    | Hellenic Air Force Academy                  | Semester for Defence and Security                |      |
| France    | French Air Force Academy                    |                                                  |      |
| Bulgaria  | "Vasil Levski" National Military University |                                                  |      |

| Service             | Minimum Qualification of Instructors                                                                                                                                                                                |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Technical/ALL       | Officers or civilian Lecturers:                                                                                                                                                                                     |
| Language<br>English | <ul> <li>English: Common European Framework of Reference for Languages (CEFR) Level B2 or min. NATO STANAG 6001 Level 3.</li> <li>Expertise in relevant topics.</li> <li>Relevant academic publications.</li> </ul> |

#### **Prerequisites for international** participants

- English: Common European • Framework of Reference for Languages (CEFR) Level B1 or NATO STANAG Level 2.
- At least 1 year of national (military) higher education.

mes

Basic knowledge in technical • systems for security and defence

### Describe the basic concept of programming languages applied in defence and Knowsecurity technology applications. Identify the main algorithms and programming language techniques used to solve ledge • the basic applications in defence and security technology systems.

and security technology systems.

**Goal of the Module** 

Concepts and constructions across programming languages.

defence and security technology applications.

Basic concepts of programming language techniques for

Computer-based problem-solving methods applied in defence

| Learning outco | Skills                              | <ul> <li>Design, implement and debug simple programs for modelling and simulation of basic defence and security phenomena.</li> <li>Apply programming languages algorithms to solve basic defence and security technology applications.</li> </ul> |
|----------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Respon-<br>sibility and<br>autonomy | <ul> <li>Analyse and check the correctness and quality of the algorithms and computer codes.</li> <li>Compare different programming language techniques to better solve applications in the defence and security technology field.</li> </ul>      |

### Verification of learning outcomes:

- Observation: Students are evaluated during each session, in order to document their understanding of the basic concept of programming languages applied in defence and security technology applications
- Project: Teamwork project and project defence.
- Test: Final examination at the end of the module.

Created by EuCTSds project consortium \_\_\_\_\_\_\_\_\_17 02 2022 Revised by EuCTSds project consortium

Page 1 of 3

30 06 2023

PROJECT NO 2020-1-RO01-KA203-080375





Common Module **Applied Informatics** Module Description

Implementation Group Doc.: Date : EuCTSds/ BE-01 30 06 2023 Origin: EuCTSds Project

| Module details                                                               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Main Topic                                                                   | Recom-<br>mended<br>WH | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Basic of programming<br>languages                                            | 4                      | <ul> <li>Lecture (2h) and Applications (2h):</li> <li>Data types. The concept of variables and declarations in programming languages.</li> <li>Mathematical operations with arrays, vectors, and matrices.</li> <li>Functions and libraries. User-defined functions.</li> </ul>                                                                                                                                                                                                                                                                                       |  |  |
| Algorithmization of data processing tasks                                    | 4                      | <ul> <li>Lecture (2h) and Applications (2h):</li> <li>Concept, classification, and methods of description of algorithms.</li> <li>Controlling the flow of information in the algorithm.</li> <li>Iterative algorithms: Iterative algorithms: Program loop: loops with and without a counter. Iterative processing principle</li> <li>Principle of recursive processing and constructing an algorithm: main segment and subroutines.</li> <li>Checking the correctness of the algorithm: tree of consecutive calls and returns, using the stack properties.</li> </ul> |  |  |
| Graphical representation of data                                             | 4                      | Lecture (2h) and Applications (2h):<br>- Plotting in two dimensions and three dimensions.<br>- GUI design.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Numerical Integration of<br>Ordinary Differential Equations<br>with MATLAB   | 8                      | Lecture (4h) and Applications (8h):<br>- Initial value problem. Runge-Kutta method.<br>- Solving ODE with MATLAB.<br>- Solving a second order ODE.<br>- Modelling of Bullet Trajectory.                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Numerical Integration of<br>Ordinary Differential Equations<br>with SIMULINK | 8                      | Lecture (2h) and Applications (8h):<br>- Solving ODE with SIMULINK.<br>- Solving a second order ODE.<br>- Modelling of Bullet Trajectory.                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Using specific MATLAB<br>toolboxes                                           | 8                      | <b>Lecture (2h) and Applications (6h):</b><br>- Structural analysis with MATLAB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Total WH                                                                     | 42                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Additional hours (WH) to increase the learning outcomes                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Self-Studies and syndicate<br>work                                           | 33                     | <ul> <li>Enhancing knowledge by studying specific documents.</li> <li>Preparation for the group project.</li> <li>Teamwork for the group project.</li> <li>Those hours comprise the work of students in laboratories and exercises to improve skills and consolidate knowledge.</li> </ul>                                                                                                                                                                                                                                                                            |  |  |
| Total WH                                                                     | 75                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |

 Created by EuCTSds project consortium
 17 02 2022

 Revised by EuCTSds project consortium
 30 06 2023

Page 2 of 3



PROJECT NO 2020-1-RO01-KA203-080375



Co-funded by the Erasmus+ Programme of the European Union



Common Module **Applied Informatics** Module Description

Implementation Group Doc.: EuCTSds/ BE-01 Date : 30 06 2023 Origin: EuCTSds Project

# **BIBLIOGRAPHY:**

1. William Bober, Introduction to Numerical and Analytical Methods with MATLAB for Engineers and Scientists, CRC Press Taylor&Francis Group, 2014;

2. Ranjan Parekh, Fundamentals of Graphics Using MATLAB, CRC Press Taylor&Francis Group, 2020; 3. William J. Palm III, Introduction to MATLAB for Engineers, McGraw-Hill, 2005;

4. Shampine L.F., Gladwell I., Thompson S., Solving ODEs with MATLAB, Cambridge University Press, 2003;

5. Yogesh Jaluria, Computer Methods for Engineering with MATLAB Applications, CRC Press Taylor&Francis Group, 2011

6. Anders Malthe Sørenssen, Elementary Mechanics Using MATLAB. A Modern Course Combining Analytical and Numerical Techniques, Springer, 2015

7. Individual materials of the lecturer

## **List of Abbreviations:**

| B1, B2 | CEFR Levels                                          |
|--------|------------------------------------------------------|
| CEFR   | Common European Framework of Reference for Languages |
| ECTS   | European Credit Transfer and Accumulation System     |
| GUI    | Graphical User Interface                             |
| ODE    | Ordinary Differential Equations                      |
| WH     | Working Hour                                         |

Created by EuCTSds project consortium \_\_\_\_\_\_\_ 17 02 2022 Revised by EuCTSds project consortium

Page 3 of 3



30 06 2023

PROJECT NO 2020-1-RO01-KA203-080375