

Common Module **Signal Processing** Module Description

Romania PolandMilitary Technical Academy "Ferdinand I" Military University of Technology Hellenic Air Force AcademySignal Processing European Common Technical Semester for Defence and Security3.0Strance Bulgaria"Vasil Levski" National Military UniversitySignal Processing European Common Technical Semester for Defence and Security3.0	Countries	Institutions	Common Module	ECTS
GreeceHellenic Air Force AcademySemister for Defence and SecurityFranceFrench Air Force Academy			European Common Technical	3.0
			Semester for Defence and Security	
Bulgaria "Vasil Levski" National Military University	France			
Durgaria v ash Eeviski Trational Minitary Oniversity	Bulgaria	"Vasil Levski" National Military University		

Service	Minimum Qualification of Instructors
Technical/ALL	Officers or civilian Lecturers:
Language English	 English: Common European Framework of Reference for Languages (CEFR) Level B2 or min. NATO STANAG 6001 Level 3. Expertise in relevant topics. Relevant academic publications.

Prerequisites for international participants

- English: Common European • Framework of Reference for Languages (CEFR) Level B1 or NATO STANAG Level 2.
- At least 1 year of national (military) higher education.
- Basic knowledge in technical systems for security and defence

Goal of the Module

- Discover and understand basic principles of signals & systems, as well as of signal processing.
- ٠ Learn about signals & systems and signal-processing techniques: basic techniques of time-/frequency-domain processing for deterministic and random signals.
- Deepen knowledge of the practical applications of radars, ٠ telecommunications, image processing and pattern recognition.

tcomes	Know- ledge	 Mastering the different steps of sampling, digitalization and reconstruction of signals. To be able to calculate and analyze the spectrum and power/energy spectral density of a signal. Knowing how to synthesize an analogue/digital filter and to apply techniques for denoising.
Learning outcomes	Skills	 Performing spectral analysis and filtering of digital signals using analytical methods and numerical/simulation tools. Giving examples of real applications and practical problems to underline how the topics treated in the course are used within engineering activity. Mastering the different steps of digitalization chain and reconstruction.
	Respon- sibility and autonomy	 Has in-depth knowledge of digital signal processing concepts and methods. Can design a digital filter with specific characteristics. Can perform digital signal processing using software.

Verification of learning outcomes:

- Observation: Throughout the Module students will meet with the systems applications, and they will ٠ discuss the given topics in the plenary and present teamwork results. During this workshop, students will be evaluated to verify their competencies.
- Project: Teamwork project and project defence.
- Test: Final examination at the end of the module.

Created by EuCTSds project consortium ______ 17 02 2022 Revised by EuCTSds project consortium

Page 1 of 3

30 06 2023

PROJECT NO 2020-1-RO01-KA203-080375

Common Module **Signal Processing** Module Description

Implementation Group Doc.: Date : EuCTSds/ EI-01 30 06 2023 EuCTSds Project Origin:

Module details		
Main Topic	Recom- mended WH	Details
Continuous-Time Fourier Transform (CTFT)	6	LecturesCTFT and Inverse CTFT, CTFT requirements and properties, commonCTFT pairs, CTFT and LTI systems, frequency response of LTIsystems, CT convolution and CTFT, filters.Exercises/LabsComputations of CTFT.Applications of CTFT for spectral analysis of signals and systems.LTI filters and applications. Teamwork for group project.
Discrete-Time Fourier Transform (DTFT)	6	Lectures DTFT and Inverse DTFT, DTFT requirements and properties, common DTFT pairs, DTFT and LTI Systems, frequency response of DT LTI systems, DT convolution and DTFT, DT filters. Exercises/Labs Computations of DTFT. Applications of DTFT for spectral analysis of signals and systems. Teamwork for group project.
Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT)	8	Lectures From DTFT to DFT, DFT and Inverse DFT, DTFT requirements and properties, the FFT idea, FFT implementations. Exercises/Labs Computations of DFT. Applications of DFT for spectral analysis of signals and systems. FFT decimation in time/frequency. FFT implementations. Spectral leakage and windowing. FFT applications. Teamwork for group project.
Sampling and Reconstruction	6	Lectures Shannon/Nyquist theory, signal sampling, sampling theorem, signal reconstruction, aliasing phenomena and anti-aliasing filters, practical sampling and reconstruction. Exercises/Labs Practical sampling and reconstruction. Anti-aliasing filters. Teamwork for group project.
Z-Transform (ZT)	12	 Lectures ZT pairs, relation between ZT and DTFT, ZT of common DT sequences, ZT requirements and properties, ZT applications, digital filters and applications. Exercises/Labs ZT applications. FIR/IIR digital filters. Teamwork for group project.
Levinson Recursion, Autoregressive (AR) Models	4	Lectures Topelitz matrices, Levinson-Durbin recursion, linear prediction, parameter estimation, AR models. Exercises/Labs AR digital filters. Teamwork for group project.
Total WH	42	

 Created by EuCTSds project consortium
 17 02 2022

 Revised by EuCTSds project consortium
 30 06 2023

Page 2 of 3

Common Module Signal Processing Module Description

Implementation GroupDoc.:EuCTSds/ El-01Date :30 06 2023Origin:EuCTSds Project

Module details				
Main Topic	Recom- mended WH	Details		
Add	litional ho	urs (WH) to increase the learning outcomes		
Self-Studies and syndicate work	33	 Enhancing knowledge by studying specific documents. Individual preparation for group project. Teamwork for group project. Self-study hours comprise work of students in laboratories and exercises to improve skills and consolidate knowledge 		
Total WH	75			

BIBLIOGRAPHY:

- L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentice Hall, 1975.
- R. J. Marks II, Advanced Topics in Shannon Sampling and Interpolation Theory, Springer-Verlag, 1993.
- Steven W. Smith, Digital Signal Processing [2nd Edition], 1999.
- S. K. Mitra, Digital Signal Processing A Computer Based Aproach [2nd Edition], McGraw Hill, 2001.
- B. Girod, R. Rabenstein, and A. Stenger, Signals and Systems, Wiley, 2001.
- T. S. ElAli, Discrete Systems and Digital Signal Processing with MATLAB, CRC Press, 2005.
- A. Palamides and A. Veloni, Signals and Systems Laboratory with Matlab, CRC Press, 2011.
- M. J. Roberts, Signals and Systems Analysis Using Transform Methods and MATLAB [2nd Edition], McGraw Hill, 2012.
- L. Tan and J. Jiang, Digital Signal Processing Fundamentals and Applications [2nd Edition], Elsevier, 2013.
- O. Alkin, Signals and Systems A Matlab Integrated Approach, CRC Press, 2014. □ L. F. Chaparro, Signals and Systems Using Matlab [2nd Edition], Elsevier, 2015.
- Schaum's Outline of Signals and Systems [3rd Edition], McGraw Hill, 2014.
- Schaum's Outline of Digital Signal Processing [2nd Edition], McGraw Hill, 2011.
- Schaum's Outlines of Theory and Problems of Signals and Systems [4th Edition], McGraw Hill, 2019.

List of Abbreviations:

B1, B2	CEFR Levels
CEFR	Common European Framework of Reference for Languages
ECTS	European Credit Transfer and Accumulation System
DSP	Digital Signal Processing
WH	Working Hour

Created by EuCTSds project consortium ______ Revised by EuCTSds project consortium ______ ... 17 02 2022 30 06 2023

PROJECT NO 2020-1-RO01-KA203-080375

