EUROPEAN SEC OLÉGY SÉCURITÉ ET DI	E DÉFENSE	Institution	Common Mo Dynamic of F Module Descr	light	Date : 30 06 Origin: EuCT	Sds/ MA-02
Roma Pola Gree Fran Bulga	nnia M nd ece ice	ilitary Technical Acade Military University o Hellenic Air Force French Air Force	Institutions Common Would Deris ary Technical Academy "Ferdinand I" Dynamic of Flight 3.0 filitary University of Technology European Common Technical Semester for Defence and Security Hellenic Air Force Academy Itevski" National Military University Itevski			
	rvice ical/ALL	• Officers or civili	-	lification of Instruc	tors	
ę			-			
Pre		for international ticipants		Goal of the M	odule	
 English: Common European Framework of Reference for Languages (CEFR) Level B1 or NATO STANAG Level 2. At least 1 year of national (military) higher education. Basic knowledge in technical systems for security and defence 			 Discover and understand basic principles of the fluid mechanics, aerodynamics and of the dynamic of flight. Learn about fluid mechanics, aerodynamics and dynamic of flight: boundary layer, laminar and turbulent flows, aerodynamic forces and moments, external ballistics, 6-DOF trajectory. Deepen knowledge of the practical application using CFD tools and Matlab programming language. 			
mes	Know- ledge					
Learning outcomes	Skills	coefficients a trajectories.Give example	• Is able to use the CFD tools to compute the aerodynamic forces, moments and coefficients as well as the Matlab programming language to compute 6-DOF trajectories.			
	Respon sibility an autonom	 of flight for d Is able to arg of flight supp Is able to anal 	efence and security ue the necessity of ort for describing th	f the fluid mechanics, aerodynamics and dynamic he defence and security systems functionality. evelopment of the new technologies in the security		

Created by EuCTSds project consortium _______ 17 02 2022 Revised by EuCTSds project consortium _______ 30 06 2023

Page 1 of 3

02 2022

PROJECT NO 2020-1-RO01-KA203-080375

Common Module **Dynamic of Flight** Module Description

Verification of learning outcomes:

- Observation: Students are evaluated during each session in order to document their understanding of the • basic concept of programming languages applied in defence and security technology applications
- **Project**: Teamwork project and project defence. .
- Test: Final examination at the end of the module. •

Module details					
Main Topic	Recom- mended WH	Details			
Basic Concepts and Laws of Fluid Mechanics	6	 Basic problem of fluid mechanics. Properties of fluids. Forces acting in fluids. Methods of fluid motion analysis, local motion of a fluid element. Basic equations of fluid mechanics (Lec:2h, Lab:4h) Applications: Determination of the pressure resistance coefficient of a circular profile. Resistance of axisymmetric bodies Determination of the pressure coefficient and total drag coefficient. Determination of differences in resistance for streamlined and non-streamlined bodies. 			
Dynamics of viscous fluids. Wave phenomena in the dynamics of gases, the influence of gas compressibility	6	 Dynamics of viscous fluids. Navier - Stokes equation. Boundary layer. The similarity of flows. Friction and pressure resistance, well-flown bodies. Resultant forces acting on the streamlined body - coefficients of aerodynamic forces and moments (Lec:2h, Lab:4h) Applications: Analytical solution of Navier - Stokes equations. Calculation of flow parameters using the equation of motion for selected specific flow cases. First integrals of Euler's equation. Application of the Bernoulli equation in calculating the flow parameters using basic measuring instruments - Pitot tube and Ventouri. Bernoulli's equation in pressure form - static, dynamic and total pressure 			
Turbulence modelling	6	 Averaged Navier-Stokes equations (RANS). Turbulence modelling. Average Navier-Stokes equations. Turbulent stress tensor, the so-called Reynolds. Application of turbulence models. An introduction to computational fluid dynamics (CFD). Fluid Mechanics. Boundary layers. Stability, transition and turbulence. Heat transfer. (Lec:2h, Lab:4h) 			
Basic concepts of exterior ballistics and dynamic of flight. Basic definitions, forces and moments	6	 Exterior ballistics. Drag force, spin damping moment, lift and normal forces, overturning moment, Magnus force and moment. Center of pressure of the normal force and the magnus force. External Ballistics. Forces acting on the projectile. Standard atmosphere. Stabilizing projectile during flight. Ballistic coefficients. Projectile drop. Drag resistance. Transonic problem. Gyroscopic and Coriolis drift, Magnus and Poisson effect. Empirical and Doppler measurement methods. (Lec:2h, Lab:4h) Applications: Description of flying objects motion. Reference systems applied in exterior ballistics. 			

Page 2 of 3

Created by EuCTSds project consortium ______ 17 02 2022 Revised by EuCTSds project consortium

Co-funded by the Erasmus+ Programme of the European Union

30 06 2023

Common Module **Dynamic of Flight** Module Description

SECURITE ET DE DEFENSE	\star 🛬 🗶 🗞	
Point mass trajectory, modified point mass trajectory, 6-DOF trajectory	6	 Equations of motion. Constant Drag Coefficient, Drag coefficient inversely proportional to Mach number, and to the square root of Mach number. Change of independent variable from time to distance. Numerical solution of the equations of motions. Standard atmospheres for point-mass trajectories. Initial conditions for 6-DOF trajectories and MPM trajectories. Numerical solution for 6-DOF and MPM trajectories. Examples of 6-DOF and MPM trajectories. Generalized Missile Equations of Motion. Coordinate Systems. Rigid-Body Equations of Motion.(Lec:2h, Lab:4h) Applications: Point mass trajectory, modified point mass trajectory, 6-DOF trajectory
Aircraft perfomance	6	 Physical nature of drag and classical drag measurements. Airflow regimes. Effect of projectile shape on drag, drag of smooth spheres. Effect of yaw on drag and minimum drag projectile shapes. Equations of motion. Firing uphill and downhill(Lec:2h, Lab:4h) Applications: Measurement of aerodynamic forces and moments.
Basic Concepts of Navigation and Dynamic of guided missiles	6	• System Design and Missile Mathematical Model. The Missile Guidance System Model. Autopilots. Aerodynamics. Missile Guidance Laws. Guidance Intercept Techniques. Missile Equations of Motion. Fundamental Guidance Equations. Proportional Navigation(Lec:2h, Lab:4h)
Total WH	42	

Additional hours (WH) to increase the learning outcomes					
Self-Studies and syndicate work 33		 Enhancing knowledge by studying specific documents. Preparation for the group project. Teamwork for the group project. Those hours comprise the work of students in laboratories and exercises to improve skills and consolidate knowledge. 			
Total WH	75				

	List of Abbreviations:
B1, B2	CEFR Levels
CEFR	Common European Framework of Reference for Languages
ECTS	European Credit Transfer and Accumulation System
GUI	Graphical User Interface
ODE	Ordinary Differential Equations
WH	Working Hour

 Created by EuCTSds project consortium
 17 02 2022

 Revised by EuCTSds project consortium
 30 06 2023

Page 3 of 3

PROJECT NO 2020-1-RO01-KA203-080375

