

Common Module **Propulsion systems** Module Description

Countries	Institutions	Common Module	ECTS
Romania Poland Greece France Bulgaria	Military Technical Academy "Ferdinand I" Military University of Technology Hellenic Air Force Academy French Air Force Academy "Vasil Levski" National Military University	Propulsion systems European Common Technical Semester for Defence and Security	3.0

Service	Minimum Qualification of Instructors
Technical/ALL	Officers or civilian Lecturers:
Language English	 English: Common European Framework of Reference for Languages (CEFR) Level B2 or min. NATO STANAG 6001 Level 3. Expertise in relevant topics. Relevant academic publications.

Prerequisites for international	Goal of the Module
 participants English: Common European Framework of Reference for Languages (CEFR) Level B1 or NATO STANAG Level 2. At least 1 year of national (military) higher education. Basic knowledge in technical 	 To broaden the knowledge on Propulsion Systems for Aircraft, gun design and ballistics. To gain sufficient insight to comprehend the working principles of the aforementioned fields To acquire knowledge and understand the thermodynamic principles of air breading/fossil-derived fuel powered systems. To identify different types of engines,
systems for security and defence	• To engage in a multi-national course where all students are expected to bring their knowledge and contribution to the lectures and teaching sessions

SS	Know- ledge	 To foster the interest of young cadets in the topics of propulsion and ballistics To gain technical knowledge on mechanical and thermodynamics principles of propulsion systems To acquire in-depth knowledge on the main factors affecting engine selection and ballistic systems design.
Learning outcomes	Skills	 Technical To identify different types of engines, To identify the basic principles of ballistic systems design. Transversal Develop a multi-cultural awareness; Improve team spirit, in heterogeneous, multi-cultural environment; To improve English level and skills; To develop communication skills;
	Respon- sibility and autonomy	• To foster propulsion systems for aircraft and ballistic applications.

 Created by EuCTSds project consortium
 17 02 2022

 Revised by EuCTSds project consortium
 30 06 2023

Page 1 of 3

Common Module **Propulsion systems** Module Description

Verification of learning outcomes:

- Observation: Students are evaluated during each session, in order to document their understanding of the • basic concept of propulsion applied in defence and security technology applications
- Project: Teamwork project and project defence. •
- Test: Final examination at the end of the module. •

Module details				
Main Topic	Recom- mended WH	Details		
Energy balance and equations of state	10	Lecture (4h) and Applications (10h) Thermodynamic systems. The first law of thermodynamics. Thermodynamic functions and potentials. Equation of state of ideal gas. Equations of state of real gases.		
Bernoulli equation - conditions for critical flow and flow through the nozzles	10	Lecture (4h) and Applications (10h) Nozzles. Mass and energy conservation equations. Conditions for critical flow.		
Basic construction of aircraft engines	10	Lecture (4h) and Applications (10h) Types engines and applications		
Propulsion in ballistic systems	6	 Lecture (2h) and Applications (4h): Types of ballistic systems. Types of propellants. Ballistic characteristics. Experimental determination of impulse and covolume for a small calibre propellant 		
Solving the fundamental problem of interior ballistics for classical artillery systems	6	 Lecture (2h) and Applications (4h): General consideration regarding fundamental problem of interior ballistics. Energy losses. Necessary equations for a 0D IB model. Solving the differential equations system in Mathcad/Matlab. 		
Total WH	42			
Additional hours (WH) to increase the learning outcomes				
Self-Studies and syndicate work	33	 Enhancing knowledge by studying specific documents. Preparation for the group project. Teamwork for the group project. Those hours comprise the work of students in laboratories and exercises to improve skills and consolidate knowledge. 		
Total WH	75			

Created by EuCTSds project consortium ______ 17 02 2022 Revised by EuCTSds project consortium

Co-funded by the Erasmus+ Programme of the European Union

30 06 2023

Common Module **Propulsion systems** Module Description

Implementation Group Doc.: EuCTSds/ MS-03 Date : 30 06 2023 EuCTSds Project Origin:

BIBLIOGRAPHY:

- 1. Carlucci D. E., Jacobson S. S. Ballistics: Theory and Design of Guns and Ammunition, CRC Press, 2007.
- 2. Corner J. Theory of the interior ballistics of guns. New York : John Wiley & Sons Inc.; 1950.
- 3. Hazell, P.J. . How Guns Work. In: The Story of the Gun. Springer Praxis Books. Springer, Cham. 2021 4. Kubota N., Propellants and Explosives: Thermochemical Aspects of Combustion, John Wiley & Sons: Weinheim, Germany, 2015.
- Serebriakov, M. E., Vnutrenniaia ballistika stvolnâh sistem i porohovâh raket, Gosudarstvenoe 5. naucino-tehniceskoe izdatelstvo, oboronghiz, Moskva, 1962.
- Sutton G. P., Biblarz O., Rocket Propulsion Elements, 9th ed.; John Wiley & Sons: Hoboken, NJ, 6. USA, 2016; pp. 491-524.ISBN 978-1-118-75391-0.
- 7. **** STANAG 4115 LAND (EDITION 2) – Definition and Determination of Ballistic Properties of Gun Propellants, 1997.
- 8. **** STANAG 4367 – Thermodynamic Interior Ballistic Model with Global Parameters, 2000.
- Individual materials of the lecturer 9.

List of Abbreviations:

B1, B2	CEFR Levels
CEFR	Common European Framework of Reference for Languages
ECTS	European Credit Transfer and Accumulation System
GUI	Graphical User Interface
ODE	Ordinary Differential Equations
WH	Working Hour

Created by EuCTSds project consortium _________17 02 2022 Revised by EuCTSds project consortium

Co-funded by the Erasmus+ Programme of the European Union

30 06 2023

Page 3 of 3